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A b s t r a c t  

A combination of Patterson methods with the maximum- 
entropy method has been tested for ab initio phase 
determination of decagonal structures. To unravel the 
n-dimensional Patterson function, the symmetry mini- 
mum function, an improvement of the Patterson super- 
position approach, is extended to the embedding 
dimensions. This method allows the positions of the 
hyperatoms to be located and a first crude structure 
model to be derived. To retrieve the shape and the 
chemical composition of the perpendicular space com- 
ponent of the hyperatoms, two procedures for applying 
maximum-entropy methods to phase extension have been 
derived exclusively constrained by the positions of the 
hyperatoms in n-dimensional space and the three- 
dimensional Patterson function. These constraints 
enforce .quasiperiodic solutions with corresponding 
chemical composition and correct interatomic distances. 
Applying the maximum-entropy method in perpendicular 
space allows the decagonal structure to be solved, 
whereas the physical space approach also provides the 
capability of determining more complex non-periodic 
structures as well as deviations from the ideal quasiper- 
iodic structure. Three successful structure solutions of 
decagonal structures show the potential of this new 
development. 

1. I n t r o d u c t i o n  

Decagonal quasicrystals represent an intermediate state 
between icosahedral and crystalline phases showing 
quasiperiodic ordering in two dimensions and periodicity 
along the third direction. While in the kinematical theory 
the electron density distribution of periodic, structures is 
related to its structure factors by a s~mple three- 
dimensional Fourier transform, quasiperiodic structures 
need to be embedded in n-dimensional space (n > 3) to 
get an analogous periodic structure-factor equation 
(Janssen, 1988, and references therein), 

N Rj 
F(H) = ~ ~ f2v(H)exp(2~,iHxj), (1) 

j=l v=l 

where fir(H) indicates the Fourier transforms o f  the vth 
atom type within the jth hyperatom and x 2 its position in 
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an n-dimensional unit cell containing N hyperatoms, each 
of them consisting of R atom types. The n-dimensional 
periodic lattice is spanned by the vectors  d i (O basis) 
adapted to the symmetry. The corresponding orthogonal 
n-dimensional space V of the embedded structure can 
now be separated into two orthogonal subspaces. The 
three-dimensional parallel space V II is used to describe 
the quasiperiodic electron-density distribution. The 
components of the hyperatoms in the ( n -  3)-dimen- 
sional perpendicular space V ±, the acceptance domains, 
generate the quasiperiodic distribution of the atomic sites 
in the cut-and-project approach. Consequently, the 
n-dimensional scattering vector H consists of two main 
componen t s ,  H II and H ±. One part of the n-dimensional 
scattering factor fjv(H), the conventional atomic scatter- 
ing factor fy~(HII), is the Fourier transform of a single 
atom of type v in physical space. The other part, the 
geometric structure factor (Jaric, 1986), 

_1_ ± fjv(H )=(1/A±)fexp(2:r iH±x~)dAjv ,  (2) 

represents the Fourier transform of the area Ajv of the vth 
atom type within the acceptance domain Aj of the jth 
hyperatom normalized to A ±, the n-dimensional unit cell 
projected onto the perpendicular space. Contrary to 
conventional crystallographic structure analysis, not only 
the positions of the hyperatoms xj have to be retrieved 
but also the shape and the detailed structure of the 
acceptance domains Aj. Consequently, the phase recon- 
struction consists of two steps: (a) finding the positions 
of the hyperatoms in the n-dimensional unit cell; and (b) 
determining the shape and structure of their acceptance 
domains. 

Attempts to solve this problem have mainly been by 
trial-and-error methods based on structure models 
derived from the n-dimensional Patterson function. A 
first discussion of direct methods in n-dimensional space 
(Fu, Li & Fan, 1993) has shown that based on a full data 
set a simulated simple structure could be solved. 
However, in quasiperiodic substances some of the 
fundamental assumptions of direct methods are not 
fulfilled and their use will be limited. For instance, 
diffraction data of decagonal quasicrystals are in general 
incomplete and lack atomic resolution, especially in 
perpendicular space (Steurer, Haibach, Zhang, Kek & 
Ltick, 1993). These data violate the underlying statistical 
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assumption of data completeness and up to now 
n-dimensional structure factors cannot be normalised. 

In addition, methods based on anomalous scattering as 
well as contrast variation could be successfully applied 
in quasiperiodic structure determination to get partial 
structure factors (deBoissieu et al., 1994). However, 
these experimental methods are restricted to quasicrys- 
tals of suitable chemical composition. Another approach 
to solve the phase problem is based on known structures 
of related rational approximants (Jaric & Qiu, 1993) that 
can be transformed by an n-dimensional shear to the 
corresponding quasiperiodic one. 

2. Structure solution by Patterson and maximum- 
entropy methods 

This paper will focus on an extension and combination of 
two algorithms in five-dimensional real space: solving 
the decagonal structure by unravelling the five-dimen- 
sional Patterson function and determining the acceptance 
domains with a restrained maximum-entropy algorithm. 

Despite the incompleteness of data sets obtained by 
X-ray diffraction experiments, cuts through the five- 
dimensional Patterson function of decagonal structures 
perpendicular to V ± show few, but distinct, peaks 
(Steurer, 1989). Using the embedding method, the 
inf'mite number of quasiperiodically ordered atoms 
condenses to only a few hyperatoms in an n-dimensional 
unit cell. As most of the decagonal quasicrystals consist 
of aluminium and transition metals, some hyperatoms 
with large acceptance domains of transition metals 
consequently generate interatomic vectors with 'heavy' 
weight. Hence, their positions can be easily derived from 
the Patterson function. A systematic analysis of all peaks 
in the Patterson map with special emphasis on the Harker 
vectors (Harker, 1936) in the five-dimensional space 
group will result in all possible positions of hyperatoms 
in the embedded unit cell. 

Unfortunately, data sets of quasicrystals lack resolu- 
tion in V ±. In consequence, the Patterson peaks are 
severely broadened in this subspace and the shape of the 
acceptance domains cannot be found by unravelling the 
Patterson function. However, if the positions of the 
hyperatoms are known, the phases of the strong structure 
factors can be determined. To reconstruct the phases of 
the weak structure factors and to improve the resolution 
in V ±, new methods have to be derived. The maximum- 
entropy method used for image enhancement allows 
electron-density maps with high resolution to be 
generated. On the other hand, this method provides the 
possibility of retrieving the unknown phases and to find a 
structure solution in agreement with all given restrictions. 
As the maximum-entropy solution strongly depends on 
the choice of proper constraints and restraints, it is of 
great importance to take advantage of the complete prior 
knowledge. Based on the positions of the hyperatoms, a 
calculation of the electron density restricted to their 

acceptance domains will constrain the maximum-entropy 
method to a quasiperiodic distribution of atoms with 
distinct distances in physical space. Starting with a trial 
electron density derived from unravelling the Patterson 
function, the maximum-entropy solution results in sharp 
boundaries of the acceptance domains with distinct 
subdivisions, and a detailed n-dimensional structure 
solution can be found. 

3. Symmetry minimum function and image-seeking 
minimum function 

Owing to the limited resolution of the obtainable 
Patterson maps, it is necessary to take into account not 
only the peaks but also the entire Patterson map. A very 
effective way of unravelling Patterson maps pixelwise is 
the symmetry minimum function SMF (Estermann, 
1995). This function, 

SMF(x) = min[(1/mi)P(x  - Six ) S i E Gno ], (3) 

examines the unique Harker vectors, generated by the 
symmetry operations S i of the space group G,o with 
multiplicity mi, on a regular grid in the Patterson map 
P(U). Taking the minimum over all symmetry-equivalent 
vectors ensures that all atomic positions x incompatible 
with the corresponding Cheshire group (Hirshfeld, 1968) 
are assigned to the background value (Simpson, Dobrott 
& Lipscomb, 1965). Hence, only positions in accord with 
the space-group symmetry will remain. 

3.1. Symmetry minimum function in decagonal space 
groups 

Based on the point symmetry of the reciprocal space 
and systematic extinctions, quasiperiodic structures can 
be assigned to n-dimensional space groups (Mermin, 
1992). The most common decagonal space group is 
PlOs/mmc,  which has the four generators 1 (0,0,0,0,0), 
105 (0,0,0,0,xs), m (xlx2x2x 1 ,xs) and m (Xl,X2,X3,X 4,1/4).  
Given a general position (x~x2x3xaxs), the most important 
of all 32 unique Harker vectors (UlU2U3U4Us) and their 
multiplicities m i are listed below (Table 1). No matter 
how broad the Harker peaks (2X12X22X32Xa2X5) are, 
positions (xlx2X3XaXs) will be significant only if all of the 
corresponding Harker vectors are above background 
level. However, the solution of the symmetry minimum 
function belongs to the Cheshire group, the Euclidean 
normalizer of the five-dimensional space group, and will 
show some ambiguities: the enantiomorph structure as 
well as all structures related by a permissible origin shift, 
e.g. (0,0,0,0,1/2) in PlOs/mmc,  are included within the 
same symmetry minimum map. Considering centrosym- 
metric decagonal space groups, peaks of the symmetry 
minimum function generated only by permissible origin 
shifts can be grouped together and treated as symmetry- 
equivalent solutions. In consequence, the subsequent 
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Table 1. Most important unique Harker vectors and their 
multiplicities m i for the space group PlO5/mmc 

U I U 2 U 3 l l  4 U 5 m i  

0 0 0 0 2x 5 20 
l 4 xl + x4 -xl - x3 - x4 xl + x3 x2 + x4 
l 2 2x~ 2x2 2x 3 2x4 

2x I 2x 2 2x 3 2x 4 2x 5 1 

structure analysis will be reduced to one member of each 
group. 

Decagonal structures with quasiperiodic layers deriv- 
able from a primitive undecorated five-dimensional 
hypercubic lattice show in the four-dimensional descrip- 
tion only hyperatoms lying on the diagonal of a 
hyperrhombohedron. Hence, there exists a characteristic 
section spanned by the diagonal of the four-dimensional 
hyperrhombohedron [11110] ° and the periodic direction 
[00001] ° containing all information about the positions 
of the hyperatoms. The initial five-dimensional problem 
can therefore be treated in the corresponding two- 
dimensional subgroup, e.g. PlOs/mmc is reduced to 
p2mg. Solving the symmetry minimum function in this 
plane group reveals all possible positions of the 
hyperatoms in the characteristic section. Nevertheless, 
the permissible origin shifts have to be derived from the 
five-dimensional supergroup. Only a subset of the 
permissible origin shifts in the two-dimensional space 
group are related to the corresponding five-dimensional 
supergroup. 

3.2. Retrieving the positions of the hyperatoms 

By selecting the strongest peak of the symmetry 
minimum function as a reliable position of a hyperatom, 
further structural information can be retrieved by 
choosing its corresponding position x e as pivot element. 
Comparing it pixelwise with all other trial atomic 
positions x, the interatomic cross vectors x - x e can be 
searched in the Patterson map. Generating all symmetry- 
equivalent positions Si xe and taking the minimum over 
all cross vectors x - S i  xP with the image-seeking 
minimum function IMF (Estermann, 1995), 

IMF(x) = min[P(x - Si XP) S i E G,o], (4) 

an unambiguous structure solution can be obtained. As 
the five-dimensional unit cell consists of a small number 
of hyperatoms with strong scattering power, selecting the 
strongest peak in the symmetry minimum function as 
pivot element will result in a feasible map. In the actual 
studies, the remaining positions taken as pivot element 
did not change the solution of the image-seeking 
minimum function. In the case of non-centrosymmetric 
decagonal space groups, a second suitable pivot element 
has to be chosen simultaneously to fix one of the two 
possible enantiomorph solutions. 

As the SMF/IMF algorithm allows the positions of the 
hyperatoms to be retrieved and small changes in the 
shape of their acceptance domains mostly affect weak 
structure factors, those with large amplitude can be 
assigned their corresponding phases. Modelling the 
shape of the acceptance domains and selecting all 
structure factors being invariant allows this phase 
assignment to be verified. Hence, the structure model 
attained can be taken as a reliable starting electron- 
density distribution for a subsequent maximum-entropy 
analysis. 

4. M a x i m u m - e n t r o p y  s o l u t i o n  o f  a c c e p t a n c e  d o m a i n s  

Owing to the reasons mentioned in §2, a further analysis 
of the acceptance domains has to be carded out by the 
maximum-entropy method (MEM). In principle, three 
different direct-space techniques of finding the max- 
imum-entropy solution of decagonal quasicrystals are 
possible: (a) calculation of the density distribution in the 
five-dimensional unit cell; (b) determination of the 
atomic density distribution only within the two-dimen- 
sional acceptance domains; (c) determination of the 
three-dimensional electron-density distribution in parallel 
space within a box with dimensions corresponding to the 
coherence length related to the diffraction experiment. 
For technical reasons, a direct computation of the five- 
dimensional electron density distribution lacks efficacy 
and resolution. As the acceptance domains are parallel to 
V ± and in consequence irrational to the five-dimensional 
lattice as well as to each other, any regular five- 
dimensional grid allows neither the determination of 
the acceptance domains in V ± nor the electron-density 
distribution in V II without interpolation. Using conven- 
tional computing facilities, the memory available will 
thus reduce the resolution in an unacceptable way. 
Restricting the five-dimensional density distribution to 
the acceptance domains as determined by the method 
shown in §3, however, is a very efficacious way of 
retrieving unknown phases. Representing the quasi- 
crystal in parallel space not only allows the embedded 
structure to be solved, but also generates an electron- 
density map in physical space showing no Fourier-series 
truncation errors, and further physical constraints can be 
directly included. 

4.1. Basic equations 

Although the theory of solving crystal structures by 
means of the maximum-entropy method has been 
extensively discussed (Collins, 1982; Bricogne, 1984; 
Livesey & Skilling, 1985) and even macromolecular 
structures can be successfully solved (Bricogne, 1993, 
and references therein), up to now only one-dimensional 
quasiperiodic sequences have been analysed in non- 
periodic systems with special emphasis on the suitability 
and reliability of the maximum-entropy method 
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(Papoular, deBoissieu & Janot, 1991). The authors 
present a profound discussion of the influence of noise 
and truncation effects in the maximum-entropy solution 
if all phases of the structure factors are known. A first 
application of the maximum-entropy method for image 
enhancement in five-dimensional space was presented by 
Steurer (1991). The calculation was performed on a 
hyperrhombohedral grid and the representation of the 
acceptance domains was obtained by bicubic interpola- 
tion. A three-dimensional maximum-entropy algorithm 
based on known phases was used to generate high- 
resolution electron-density maps of decagonal 
A170ColsNil5 (Steurer et al., 1993). 

Solving decagonal structures requires the fundamental 
maximum-entropy equations (Bricogne, 1984) 

P i  exp(~-~ )~n 0C-~qin ) 
qi - -  Z(21 . . . .  , '~'N¢.) k,n=l 

(5) 

Z(21 . . . . .  2Uc ) = ~ piexp (6) /=, °-ffq ) 

to be solved in five dimensions for all N e grid points qi 
restricted to all N c constraint equations Co by Lagrange 
multipliers 2,. Two different constraint equations are 
necessary to take all structure factors derived from the 
symmetry minimum solution and all  the observed 
structure amplitudes simultaneously into account. If the 
noise is assumed to be Gaussian, the known structure 
factors Fobs(H ) can be constrained by 

C1 -- ~--~(1/0.2 ) Fobs(H ) _ Fdc(H) 2 = X2 (7) 
H 

with their corresponding standard deviations 0.. The 
second constraint equation ( c f  Sakata & Sato, 1990) 
only depends on the structure amplitudes and restrains all 
unknown phases to 

C2 = E (1/0.2) I Fobs(K) - Fclc(K) 2 =  X 2" (8) 
K 

Substituting (7) and (8) into (5) results in a five- 
dimensional algorithm: 

qi  = [Pi/Z(21, '~2)] exp[ - 221 ~H (1/O'2)  

× F o b s ( H )  - F¢I¢(I-I)] cos(2rrHxi - qgz) 

- 2 2 2  ~(1/0.2) Fobs(K)l _ F:I:<'<> I 

× cos(2:rrKxi -- qgcle)]. (9) 

with 9,a = arctan{Im[Fobs(H) - Fclc(H)]/Re[Fobs(H)- 
Felt(H)]}, the phase of the structure-factor difference. 
This equation can be maximized solving 2 i by Newton's 
method (Bricogne, 1984) or by exponential modelling 
(Collins & Mahar, 1983). However, using solely the 

above constraint equations and iterating with the 
exponential modelling procedure is a very unstable way 
in finding the global maximum. To obtain a solution that 
is in agreement with all physical constraints, one has to 
take into account the interatomic distances and to avoid 
unphysically shaped atoms. The most feasible solution 
can be found using as many constraints as possible that 
are previously known. In the case of quasicrystals, the 
kind of ordering as well as all possible interatomic 
distances can be easily constrained by restricting the 
density calculation onto the planes of the acceptance 
domains. Separating the five-dimensional space into the 
two orthogonal subspaces and introducing the geometric 
structure factor (2), (9) can be rewritten as a pseudo two- 
dimensional algorithm in V±: 

qi  = [Pi/Z(21,22)lexp[ - 221 ~n (.711/o.2) 

x Fobs(H ) - Fcic(I-I ) cos(2zrHXx/x + 9 o - qg,a ) 

x cos(2rrK±x~ - + ~o ° - qgd¢)]. (10) 

The maximum-entropy calculation has now to be 
performed exclusively on a set of two-dimensional 
planes parallel to V ± centred at the positions of the 
hyperatoms x ° with the corresponding phase 

¢p0 = 2rrHx 0. (11) 

As the atomic distribution is restricted to the planes of the 
acceptance domains, there exist further inherent con- 
straints. The structure solution will obviously be 
quasiperiodic and avoiding overlap of acceptance 
domains introduces the closeness condition (Kalugin & 
Katz, 1993), e.g. only physical atomic distances can be 
generated. To introduce this constraint, it is proposed that 
grid points in the planes of the acceptance domains are 
generated with identical perpendicular components. The 
sum of the occupancies of adjacent acceptance domains 
can be limited to unity. Hence, a reliable density 
distribution on the scale of the average atomic scattering 
factor jTil including the overall Debye-Waller factor is 
derived and the geometric structure factor can be 
determined. Based on the crude structure model derived 
by the SMF/IMF algorithm, the remaining unknown 
phases can be retrieved and a detailed structure solution 
can be derived. 

4.2. Representation of decagonal quasicrystals in 
physical space 

The algorithm introduced in ~4.1 is an efficient way 
of solving the phase problem as the problem is reduced 
to two dimensions. As mentioned above, generating the 
electron-density distribution in parallel space by using 
a three-dimensional cut through the five-dimensional 



TORSTEN HAIBACH AND WALTER STEURER 281 

structure lacks resolution, and artefacts caused by 
interpolation algorithms may be induced. The electron- 
density distribution can now be obtained by a Fourier 
transform using the phases solved by the two- 
dimensional maximum-entropy calculation. However, 
as Fourier-series truncation errors severely bias this 
electron-density calculation (cf. §2), achieving high 
resolution in physical space needs a further maximum- 
entropy computation to be performed. Based on a 
three-dimensional grid in V II , (9) can only be fulfilled 
exactly if the number of grid points N e is infinite. The 
experimentally observed half-widths (FWHM) of the 
Bragg peaks actually indicate coherence lengths of 
decagonal quasicrystals of the order of 1000 to 
10 000 A. Conventional three-dimensional maximum- 
entropy calculations show that decagonal structures 
with lattice parameters a~l,...,4 _~ 4,~, a ° are reasonably 
represented by an orthorhombic box with dimensions 
a ° >400,4,, a ° = a  ° (Haibach, 1994). Using an 1 , 2 -  
a n a l o g o u s  expression to (9) in three dimensions, the 
electron-density distribution of the quasicrystal can 
now be represented on a regular three-dimensional 
grid. Fixing all phases of the structure factors solved 
by the procedure discussed in §4.1, the less biased 
structure of the ideal quasicrystal in physical space can 
be found. 

On the other hand, all quasicrystals observed up to 
now exhibit a considerable amount of diffuse scattering 
due to structural disorder (Frey & Steurer, 1993). Solving 
the maximum-entropy equations in V ± exclusively 
around the centres of the hyperatoms is a strong 
constraint to an ideally perfect quasicrystal. It does not 
allow any atomic shifts in V II beyond phason flips. In 
consequence, the above procedure can be only the first 
crude step in finding an average local building element. 
For a detailed analysis of the average real structure, a 
maximum-entropy algorithm in V II will be more suited as 
it is more variable. Not only intensities at Bragg 
positions, but also diffuse scattering, can be used as 
observed data. Hence, the method can be extended to the 
non-periodic case calculating the entire direct space of a 
disordered structure using Bragg peaks and diffuse 
intensities as well. However, there are more structural 
degrees o f  freedom. The main constraints in a physical 
space algorithm are given in (7) and (8) for the set of 
known phases and known structure amplitudes. To result 
in a reliable and reproducible maximum of entropy, 
further restrictions have to be used and all prior 
knowledge has to be implemented. Instead of creating 
a construct of constraint equations, however, the 
Patterson function is a feasible mask for the maximum- 
entropy algorithm. 

4.3. Using the Patterson function as prior knowledge 

As the Patterson function is the pair correlation 
function, the atomic positions of the structure have to 

be a subset of all Patterson peaks. This function can be 
calculated from the observed intensities without prior 
knowledge. Hence, a normalized cut of the five- 
dimensional Patterson function parallel to V II c a n  be 
considered as prior electron-density distribution. All 
permissible atomic positions will coincide with a 
Patterson peak. In consequence, all existing interatomic 
distances in the structure as well as the global 
quasiperiodic ordering within the given size of the 
three-dimensional representation are guaranteed. Maxi- 
mizing the entropy starting with this prior distribution 
will cause some of the Patterson peaks to vanish and 
others to change their relative values. Generating new 
atomic positions is hindered, however. 

Fixing the phases of the strongest reflections will 
further constrain the maximum-entropy solution to the 
average structure model consistent with the image- 
seeking minimum map. In non-centrosymmetric decago- 
nal structures, one has to select special reflections in 
addition to fix one of the two enantiomorphs. It has to be 
stressed that fixing the phases derived from the trial five- 
dimensional structure model can only be correlated with 
the three-dimensional Patterson map if one of the 
hyperatoms is situated at the origin. Otherwise, the 
origin of the structure model has to be shifted. 

The resulting electron-density map shows all atomic 
positions in physical space. Assigning each peak its 
integrated density, the corresponding atom type is 
determined and the acceptance domains can be con- 
structed analytically or the atomic positions can indivi- 
dually be lifted in five-dimensional space. For the latter 
procedure, each atomic position is described on the five- 
dimensional orthogonal basis V as x II = (xlx2x3000) r. If 
these vectors are transformed onto the basis D with basis 
vectors d i, they can be shifted back into one unit cell 

v W -1 mod(Wx II di)  (12) Xre d = 

with the matrix W that transforms the coordinates of the 
V basis to the D basis. 

With the atomic positions corresponding to the same 
hyperatom accumulated, the acceptance domains can be 
redrawn by a simple back transformation onto the basis 
V considering cuts parallel to V ±. Hence, the physical- 
space maximum-entropy solution can easily be described 
in the n-dimensional approach and a subsequent least- 
squares refinement allows the final structure model to be 
verified. 

5. Results 

The reliability and efficacy of the algorithms presented 
above were first tested using a hypothetical structure 
similar to decagonal A170ColsNi15 with pentagrammal 
acceptance domains (Fig. 1) consisting of m153NilsRh33.  
The influence of the size of the parallel-space representa- 
tion of the resolution of data sets and of the density of 
grid points was extensively studied. These parameters 



282 SYMMETRY MINIMUM FUNCTION AND MAXIMUM-ENTROPY METHOD 

were determined empirically. The minimum conditions 
that guarantee a correct but rather biased solution (grid 
effects: sharp and distorted electron-density distribution 
of atoms) as well as the optimum conditions (correct and 
less biased structure, smooth electron-density distribu- 
tion) are given in Table 2. Comparison of the lifted 
Fourier map (Fig. 2) and the lifted maximum-entropy 
map (Fig. 3), both calculated on a data set with 
IH±I _< 1.0 ,~-1 (136 reflections in the zeroth layer), shows 
the improved resolution of the latter method impres- 
sively. The structured point distribution in the acceptance 
domain obtained by lifting the atoms refers to the limited 
size of the parallel-space region. The radius of each point 
represents the integrated electron density of the lifted 
atomic types. The large dots correspond to rhodium, the 
medium dots to nickel and the small dots to aluminium. 

Ni 

].5~, 
i" I 

_j-Y 
[00010] V 

(a) (b) 

Fig. 1. (a) Pentagrammal acceptance domain of hypothetical decagonal 
Als3NilsRh32 corresponding to hyperatom 2 of A170ColsNil5 (Steurer 
et al., 1993). (b) Section through the acceptance domain along the 
line drawn in (a). 

Table 2. Minimum and optimum parameters for the 
V II_MEM calculation 

a°: orthorhombic box dimensions; a~/: decagonal lattice parameters 
(V basis) 

Parameters Minimum Optimum 
Parallel-space a°2 > 100la~,....41, a ° 2  > 4001d~ 41, 

region 'a3O =dsO 'o~-= a~5 ..... 
Grid resolution (/~,) 0.19 0.10 
Data-set resolution IH±I _> 1.0 IH±I >_ 2.0 

in V ± (,~-l) 

The lowest densities plotted refer to an integral density of 
one hundredth of the maximum in the maximum-entropy 
solution, whereas concerning the Fourier transform the 
cut-off level has been increased to 15% (half-occupied 
aluminium position) for clarity. Despite the fact that low 
occupancy and chemical disorder were not prohibited, 
the map generated with the maximum-entropy algorithm 
shows a very sharp contrast corresponding to the regions 
of different chemical composition. One can clearly 
distinguish the pentagrammal regions of the trial 
structure. 

5.1. The structure solution of AlzoCil5Nil5 

Decagonal A170COlsNi15 provided a good test exam- 
ple for the combined use of the symmetry minimum 
function and the maximum-entropy method. It has a 
five-dimensional unit cell with d11...,4=3.393(1), 
d 5 = 4.0807 (3) ,~, Ol i j  - ' -  60, ofi5 = 90 ° (i, j = 1 . . . .  4), 
space group PlOs/mmc, and the structure is known 
(Steurer et al., 1993). The actual data set was recently 
collected at the synchrotron facility HASYLAB at 

• A1 • Ni • Rh 

I I 

[O0010] V 

Fig. 2. Simulated structure: acceptance domain of h.lT~eratom 1 
calculated with a Fourier transform in VII (760 x 760A) lifted in 
V ± (cut-offlimit: 15% Pmx). 

• AI • Ni • Rh 

I I 

[00010] V 

Fig. 3. Simulated structure: acceptance domain of  hypcra tom 1 based on 
a maximum-ent ropy calculation in V I' (760 x 760~,)  lifted in V ± 
(cut-off  limit: 1% Pmax). 
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DESY. 5290 reflections were collected, of which 3725 
were unique. Each peak was collected with its profile. A 
special background analysis was necessary as the data set 
was severely biased by diffuse scattering phenomena. 
Only reflections with I > 8o'(/) showed reliable peak 
shapes, and these 790 reflections are used for the 
subsequent analysis. 

Both the Patterson map (Fig. 4) and the corresponding 
symmetry minimum function (Fig. 5) were calculated 
on a 200 x 100 grid (0.04A per grid point) on the 
characteristic section spanned by [ 11110] ° and [00001 ]o. 
The symmetry minimum function was calculated in the 
plane group p2mg, which provides the symmetry of the 
characteristic section. Three corresponding Harker vec- 
tors [2x 1, 2x2], [1/2, 2x2] and [2x I -I- 1/2, 0], neglecting 
the origin vector [00], were used. All maps are shown as 
contour plots with five equidistant levels between 
minimum and maximum values in that section. The 
correct positions of the hyperatoms related by permis- 
sible origin shifts are found within the topmost positions 
in the corresponding peak list. Obviously, despite the 
broad Patterson peaks, the symmetry minimum function 
generates a sharp map. The set of positions located at 
[(2n - 1) x 0.2, 0, x x, (2n - 1) x 0.2, 0] v are incorrect. 
Referring to the plane group, these positions are related 
to the correct ones in (2n x 0.2, 0, x 3, 2n x 0.2, 0) v by 
an origin shift of [1 0]. Despite the fact that this origin 
shift is permissible in p2mg and no new information 
would be attained, there exists no analogous translation 
in the decagonal space group P lOs/mmc. Hence, two 
different decagonal structures would result. However, 
these peaks can be deferred by means of the embedding 
approach. The complete information of all possible 
positions of hyperatoms is obtained. The top two peaks 
of the symmetry minimum function were used as trial 
pivot elements for the image-seeking minimum function. 
Obviously, in both image-seeking minimum solutions, 
all hyperatoms are found (Fig. 6). The assignment of A1, 
Co and Ni to the hyperatoms was based on the weight of 
the corresponding peak. This model was taken as reliable 
electron-density distribution for fixing phases in the 
subsequent maximum-entropy analysis. 

As in decagonal Alv0Co~sNi~5 projecting the structure 
parallel to the periodic direction generates no overlap of 
the atomic positions, the maximum-entropy calculation 
can be reduced to a two-dimensional computation. As a 
first step, all structure factors F(h~, h2, h 3, h4, 0) were 
calculated based on the above crude model using simple 
pentagons as acceptance domains. Varying the shape and 
scattering power of the hyperatoms, a set of strong 
structure factors consisting of 14 reflections invariant 
under these operations could be separated and was fixed 
in the subsequent structure solution. The maximum- 
entropy method converged in 200 cycles from the trial 
electron density (the normalized Patterson map). All 
peaks were searched and their integral electron density 
was computed and the structure in physical space was 
then lifted into five dimensions and sections parallel to 
V ± through the centres of the hyperatoms were drawn. 
For comparison, the structure as derived by modelling 
acceptance domains (Steurer et al., 1993) and the ab 
initio solution using the procedure described above are 
shown (Fig. 7). The maximum-entropy solution shows 
impressively sharp acceptance domains with distinct 
subdivisions of different chemical composition. The 
innermost part (larger dots) represents the region 
occupied by transition metals. As can be seen by the 
fluent variation of the dot size, the outer part consisting 
mainly of aluminium comprises significant amounts of 

[10010] V 

Fig. 5. A170ColsNils: characteristic section of the symmetry minimum 
function (SMF). The refined positions of the hyperatoms are marked 
for comparison. 

0 0 

[10010] V 

Fig. 4. Al70ColsNils: characteristic section spanned by the periodic axis 
[00001] o and the diagonal of the hyperrhombohedric subcell 
[11110l ° of the Patterson map. 
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Fig. 6. A170ColsNi15: characteristic section of the image-seeking 
minimum function (IMF). The refined positions of the hyperatoms 
are marked for comparison. 
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transition metals, which can be confirmed by the 
structure refinement. The structured distribution of the 
lifted atoms is induced by the limited size of the parallel- 
space region and has to be considered as homogeneously 
dense. Although the calculation was performed in 
perpendicular as well as in parallel space, parallel shifts 
of parts of the acceptance domains could not be found. 
However, there exists a significant amount of chemical 
and phason disorder (Haibach, Estermann, Steurer, 
Kalning & Kek, 1995). 

Using the same procedure, the structure of decagonal 
A172Fe23Ni 5 could be solved. The positions of the 
hyperatoms were retrieved by the SMF/IMF algorithm, 
whereas the shapes of the acceptance domains were 
found by the maximum-entropy method (Haibach, 
Steurer & Grushko, 1996). 

5.2. Structure of Al70.~Mn~6.5Pd23 

Decagonal A170.5Mn16.5Pd13 belongs to the family of 
quasicrystals with translation period of ~,12 A. A first 

94% AI, 6% Ni/Co 

Ni/Co 
(a) 

. .  

~:.~ ~ _ " ~  ~..~p.~-~ ...... 

• .:..,..~.~,..~,~ ~ ~- - , . . . -~ ,~ , .~ .  

(b) 

Fig. 7. AlToCOlsNil5: (a) acceptance domain of hyperatom 1 as derived 
by modelling the acceptance domain; (b) acceptance domain of 
hyperatom 1 as obtained by the MEM. 

crude structure model was proposed (Steurer, Haibach, 
Zhang, Beeli & Nissen, 1994) but a detailed structure 
model could not be derived since the analysis of the 
decagonal structure is severely biased by diffuse 
scattering. In consequence, the real structure would be 
considerably disordered and solving the average structure 
would be a rather large simplication. The X-ray data 
were collected using an Enraf-Nonius CAD-4 four-circle 
diffractometer. The five-dimensional unit-cell parameters 
were refined to d I ..... 4 = 3.480 (1), d 5 = 12.557 (1) /k, 
otij=60 and c~is=90 ° ( i , j = l  . . . . .  4). Owing to 
systematic extinctions, the decagonal space group 
PlOs/rnmc has been selected. The data collection 
included 6647 reflections, of which 476 were unique, 
with I > 30"(/). The Patterson map (Fig. 8) was sampled 
on a grid 200 x 300 (0.04,~ per grid point). Again, the 
symmetry minimum function was calculated in the two- 
dimensional subgroup p2mg. For comparison with the 
st_~cture solution, the final positions of the hyperatoms 
are indicated (Fig. 9). In contrast to the Patterson map, 
the SMF solution consists of very sharp peaks and all 
possible positions compatible with the space group can 
be found. For the same reasons mentioned in §5.1, a 
subset of peaks is deferred. With the first three peaks 
selected as pivot elements, a set of image-seeking 
minimum functions has been calculated. With only 
solutions in agreement with minimum bond lengths 
accepted, a trial structure model has been selected for a 
subsequent analysis with the maximum-entropy method 
(Fig. 10). 
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Fig. 8. A170.sMnz6.sPdl3: characteristic section spanned by the periodic 
axis [00001] ° and the diagonal of the hyperrhombohedric subcell 
[11110] ° of the Patterson map. 
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Contrary to the structure discussed in §5.1, different 
hyperatoms of A170.5Mn16.5Pd13 coincide if they are 
projected onto the decagonal plane. In consequence, the 
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o ~ C ? o  

o ° 
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a ~ o  

~ 0 ~ o  
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Fig. 9. A170.sMn]6.sPd]3: characteristic section of the symmetry 
minimum function. The refined positions of the hyperatoms are 
marked for comparison. 

0 
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Fig. 10. AlTo.sMn]6.sPd]3: characteristic section of the image-seeking 
minimum function. The ref'med positions of the hyperatoms are 
marked for comparison. 

analysis with the maximum-entropy method was parti- 
tioned into two steps: (a) solving the projected structure, 
and (b) for computational reasons, retrieving the three- 
dimensional structure based on the preceding solution 
using a smaller box as parallel-space representation. 

The projected structure was determined fixing 23 
structure factors being invariant when slightly modifying 
the SMF/IMF structure model. The calculation was 
performed on a 4000 x 4000 grid (0.19 ,~ per grid point) 
taking all symmety elements into account. All structure 
factors F ( h  I , h 2, h3, ha, 0) were obtained. The projected 
electron-density distribution (Fig. 11) was in accordance 
with models derived from HRTEM images (Beeli & 
Nissen, 1993). 

For the subsequent analysis, the set of known structure 
factors was extended and a three-dimensional MEM map 
was computed starting from the projected electron- 
density distribution on a 1000 x 1000 × 80 grid and a 
corresponding volume of 195 x 195 x 12.557,~, 3. The 
final electron-density map was transformed into inte- 
grated densities and lifted into five dimensions. Special 
sections corresponding to the SMFflMF solutions 
through the hyperatoms show the complicated bound- 
aries and the different subdivisions of the acceptance 
domains (Fig. 12). As mentioned above, the distribution 
of the atoms in the acceptance domains is generated by 
the limited region lifted into V ±. 

6. Concluding remarks 

The efficiency of the combination of the symmetry 
minimum function and the maximum-entropy method in 
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Fig. 11. A170.sMn16.sPd13:23.4 x 23.4,~ region of the structure 
projected onto the quasiperiodic layer. 
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the n-dimensional description of quasicrystals was 
illustrated by two stucture determinations of decagonal 
quasicrystals with different complexity. 

In the case of decagonal A170CozsNiz5, the previous 
structure determination could be improved and the 
acceptance domains could be described in more detail. 
As demonstrated with decagonal AlT0.sMnx6.sPdz3, the 
symmetry minimum function is a very powerful tool in 
deriving a first n-dimensional structure model con- 
strained only to the corresponding space-group symme- 
try. Because the data sets are severely limited, the 
maximum-entropy method is the best way in further 
analysing the acceptance domains. Two different real- 
space approaches were presented. With a physical-space 
representation, the best results could be obtained and the 
acceptance domains could be solved by lifting the 
corresponding electron density into five dimensions. 
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Fig. 12. A170M.nl6.5Pd]3: acceptance domains of hyperatom 1 and 
hyperatom 2 (Steurer et al., 1994) obtained by lifting the three- 
dimensional MEM electron-demity solution (cut-off limit: 1%/9max). 

Both methods have not yet been tested with icosa- 
hedral quasicrystals, but it is expected that the symmetry 
minimum function and the maximum-entropy method in 
V ± centred at the hyperatoms will solve these structures 
as well, while the use of the algorithm based on a 
representation in physical space will fail owing to the 
limited computing facilities available up to now. 

All synchrotron experiments were performed at the 
HASYLAB synchrotron facility at DESY. The authors 
thank Stefan Kek for help in the measurements and 
Michael A. Estermann for many inspiring discussions. 

R e f e r e n c e s  

Beeli, C. & Nissen, H.-U. (1993)• J. Non-Cryst. Solids, 
153/154, 463-467. 

deBoissieu, M., Stephens, P., Boudard, M., Janot, C., 
Chapman, D. L. & Audier, M. (1994). Phys. Rev. Lett. 72, 
3538-3541. 

Bricogne, G. (1984). Acta Cryst. A40, 410-445. 
Bricogne, G. (1993). Acta Cryst. D49, 37-60. 
Collins, D. M. (1982). Nature (London), 49-51. 
Collins, D. M. & Mahar, M. C. (1983). Acta Cryst. A39, 

252-256. 
Estermann, M. A. (1995). Nucl. Instrum. Methods, 354, 

126-133. 
Frey, F. & Steurer, W. (1993). J. Non-Cryst. Solids, 153/154, 

600--605. 
Fu, Z., Li, F. & Fan, H. (1993). Z. Kristallogr. 190, 57-68. 
Haibach, T. (1994)• PhD thesis, ETH Zurich, Switzerland. 
Haibach, T., Estermann, M. A., Steurer, W., Kalning, M. & 

Kek, S. (1995)• Proceedings of the 5th International 
Conference on Quasicrystals (ICQ95). Singapore: World 
Scientific. 

Haibach, T., Steurer, W. & Grushko, B. (1996). In preparation• 
Harker, D. (1936)• J. Chem. Phys. pp. 381-390. 
Hirshfeld, F. L. (1968). Acta Cryst. A24, 301-311. 
Janssen, T. (1988)• Phys. Rep. 168, 55-113. 
Jaric, M. V. (1986). Phys. Rev. B, 34, 4685-4698. 
Jaric, M. V. & Qiu, S. Y. (1993). Acta Cryst. A49, 576-585. 
Kalugin, P. A. & Katz, A. (1993)• Europhys. Lett. 21,921-926• 
Livesey, A. K. & Skilling, J. (1985). Acta Cryst. A41, 113- 

122. 
Mermin, N. D. (1992). Rev. Mod. Phys. 64, 3-49. 
Papoular. R. J., deBoissieu, M. & Janot, C. (1991)• Methods of 

Structural Analysis of Modulated Structures and Quasi- 
crystals, edited by J. M. P6rez-Mato, F. J. Zfifiiga & 
G. Madariaga, pp. 333-343• Singapore: World Scientific• 

Sakata, M. & Sato, M. (1990)• Acta Cryst. A46, 263-270. 
Simpson, P. G., Dobrott, R. D. & Lipscomb, W. (1965). Acta 

Cryst. 18, 169-179. 
Steurer, W. (1989). Acta Cryst. B45, 534-542. 
Steurer, W. (1991). Methods of Structural Analysis of 

Modulated Structures and Quasicrystals, edited by J. M. 
P6rez-Mato, F. J. Ztifiiga & G. Madaraiga, pp. 344-349. 
Singapore: World Scientific. 

Steurer, W., Haibach, T., Zhang, B., Beeli, C. & Nissen, H.-U. 
(1994). J. Phys Condens. Matter, 6, 613-632. 

Steurer, W., Haibach, T., Zhang, B., Kek, S. & Liick, R. (1993). 
Acta Cryst. B49, 661-675. 


